Example Problems Packet

Hot Mix Testing Recertification

Quality Control / Quality Assurance

PERCENT RECLAIMED ASPHALT PAVEMENT (RAP) IN THE MIX AS PERCENT OF TOTAL AGGREGATE

WEIGH TICKET ENTRIES

$$\vdots = \frac{A \times \left(\frac{B}{1000}\right)}{\left[1 + \left(\frac{B}{1000}\right)\right]}$$

$$D = A - C$$

$$F = A \times \left(\frac{E}{100}\right)$$

$$H = A \times \left(\frac{G}{100}\right)$$

$$I = D - (F + H)$$

WEIGH BRIDGE ENTRIES

$$L = \frac{J \times \left(\frac{K}{100}\right)}{\left[1 + \left(\frac{K}{100}\right)\right]}$$

$$M = J - L$$

$$P = \frac{N \times \left(\frac{0}{100}\right)}{\left[1 + \left(\frac{0}{100}\right)\right]}$$

$$Q = N - P$$

$$R = M + Q$$

RAP PERCENTAGES

$$S = \left(\frac{Q}{R}\right) \times 100$$

$$T = \left(\frac{Q}{I}\right) \times 100$$

$$\text{U} \ = \left(\frac{I-R}{I}\right) \times 100$$

specific gravity of asphalt binder

Gsb = bulk specific gravity of mineral aggregate

percent asphalt binder content Pb =

$\frac{100 - Pb}{\left(\frac{100}{Gmm}\right) - \left(\frac{Pb}{Gb}\right)}$	$\left(\frac{\rm Gmm\ -\ Gmb}{\rm Gmm}\right)\times 100$	100 – Pb	$100 - \left(\frac{\rm Gmb \ \times \ Ps}{\rm Gsb}\right)$	$\left(\frac{\text{VMA} - \text{Va}}{\text{VMA}}\right) \times 100$	$100 \times \left(\frac{\text{Gse} - \text{Gsb}}{\text{Gse} \times \text{Gsb}}\right) \times \text{Gb}$	$Pb - \left(\frac{Pba \times Ps}{100}\right)$	
II		ıı	II.	ıı j	ıı [ıı	
GSe (Effective specific gravity of mineral aggregate)	Va (Percent Air Voids)	Ps (Percent aggregate content of mixture)	VMA (Voids in the Mineral Aggregate)	VFA (Voids Filled with Asphalt)	Pba (Percent asphalt absorption)	Pbe (Percent effective asphalt content)	

DOT-86 Equations

height_(measured)

Gmb_(measured)

Ш

Gmb x

height x ×

Calculation for G_{ab} bulk specific gravity of compacted mix at any given gyration point in the process when x is number of gyrations such as at N_{ab} or N_{dac}

)×100

Gmb Gmm

Ш

(Percent of mixture theoretical maximum specific gravity) % of Gmm

/ % - #200 material + % hydrated lime

Ш

Dust to Binder Ratio

Asphalt Binder Content (SD 314)

Complete the DOT-89 form below. What is the Job Mix Formula Tolerance? _____

TANK METHOD				
A. Beginning Specific Gravity of Bitumen @ 60°F	1.035	_		
B. Beginning Weight Per Gallon @ 60°F	8.630	*Temp. Cor		
C. Temperature of Bitumen in Tank When Check Starts	295*	Factor Cha	rt in SD 314	
D. Weight Per Gallon of Bitumen at Temperature		_		
E. Gallons in Tank When Check Starts (calibrated stick)	29272	_		
Gallons at Start (at start of tank use)		G. Load #	Invoice #	Tons
f. Weight of Bitumen in Tank (start check) (D x E / 2000)		1	10007	26.80
G. Weight of Bitumen Added to Tank(s)		2	10009	26.47
H. Temperature of Bitumen in Tank When Check Ends	295*	3	10012	33.79
Gallons in Tank When Check Ends (calibrated stick)	29094	4	10017	40.64
J. Ending Specific Gravity of Bitumen @ 60°F	1.035	5	10019	25.65
K. Ending Weight Per Gallon @ 60°F	8.630	-		
L. Weight Per Gallon at Temperature		Summa	ry of Mix Produc	ed
M. Weight of Bitumen in Tank (end check) (I x L / 2000)		To Road	3707.24	Tons
Left in Storage (at end of tank use)	П	Plant Waste	0.0	Tons
N. Weight of Bitumen Used (F + G - M)		Road Waste	0.0	Tons
O. Weight of Mix Produced (Tons)		To Others	0.0	Tons
P. Percent Bitumen in Mix (N /O x 100)		Produced	3707.24	Tons

Hydrated Lime

Complete the DOT-33Q form below. What is the Job Mix Formula Tolerance?

TANK METHOD	
A. Weight of Lime in Tank at Start (Tons) Tons at Start (at start of project only)	41.23
B. Weight of Lime Added to Tank (Tons)	
C. Weight of Lime in Tank at End (Tons) Left in Storage (at end of project only)	39.37
D. Weight of Lime Used (A + B - C) (Tons)	
E. Weight of Mix Produced (Tons)	
F. Percent of Lime in Mix (D / E x 100)	

В.	Load #	Invoice #	Tons	Summary o	of Mix Produced
	2	5552	34.90	To Road	3707.24
			0	Plant Waste	0.0
			- CO	Road Waste	0.0
		<u> </u>	(4)	To Others	0.0
		-	· · · · · · · · · · · · · · · · · · ·	Produced	3707.24

Moisture in the Mix

Complete the calculations below. What is the max % moisture allowed? _____

Α.	Container Number:	1
B.	Weight of container and cover (g):	222.3
C.	Weight of container, cover and sample (g):	1723.7
D.	Apparent dry weight (g): (C – B)	
E.	Actual dry weight (g): (J – B)	
F.	Moisture in material (g): (D − E)	
G.	% Moisture in the Mix: (F / E) * 100	

DRYING WEIGH BACK AREA (H)

	Time	Weight (g)	
	12:00 PM	1722.1	
	2:00 PM	1721.9	
	3:00 PM	1721.8	
J. Weight of mater	Weight of material and pan:		

Percent Moisture in the Mix:	
Spec:	

RAP Content

Complete the DOT-93 form below. Use the RAP equation sheet found in the Problems Packet. What is the Job Mix Formula Tolerance? _____

WEIGH TICKET ENTRIES

A.	Total of hot mix produced by tickets (tons)	3707.24
В.	Moisture in the mix percentage (most recent one tested)	0.13
C.	Moisture in the mix (tons)	
D.	Total dry amount of hot mix produce for the day (tons)	
E.	Added binder percentage by cutoff (DOT-89)	4.20
F	Total amount of added binder (tons)	
G.	Added lime percentage by cutoff (DOT-33Q)	0.99
H.	Total amount of added lime (tons)	
I.	Total dry Virgin MA and RAP from tickets & cutoffs (tons)	

WEIGH BRIDGE ENTRIES

J.	Weight of Virgin MA from weight bridge totalizer (tons)	2761.1
K.	Percentage moisture in Virgin MA	3.9
L.	Weight of water in in Virgin MA (tons)	
M.	Weight of dry Virgin MA (tons)	
N.	Weight of RAP from weigh bridge totalizer (tons)	830.2
0.	Percent moisture in RAP	0.2
Ρ.	Weight of water in the RAP mixture (tons)	
Q.	Weight of dry RAP from weigh bridge totalizer (tons)	
R.	Total dry Virgin MA and RAP from weigh bridges (tons)	

RAP PERCENTAGES

- S. Percentage of RAP based on weigh bridges
- T. Percentage of RAP based on weigh tickets
- U. % difference between scale tickets and weigh bridges

Calculate the draindown percentage on the DOT-91 form below.

Sample ID File No.		A	sphal	Draindown Workshee	t		DOT - 91 9-15
PROJECT		COUNTY				PCN	
Field #		Date Sam	pled	9//	Date Tested	71	
Sampled By			Tested 8	Зу	Checked By		
MixType	Class S	-	Asphalt	Cement	Cellulose Fibers		
				Weight of test sample	1327.4	grams	
Weight of container emp	ty 52.	3	grams	Weight of container after test	53.1	grams	
Draindow	n	:	≤ 0.3%	Temperature of test sample	300	°F	

DOT-86 Gyratory Worksheet

Complete the DOT-86 for a Q2R Mix.

Use the equation sheet in the Problems Packet.

Mix Temp	275						
				No. of gyrations			
% binder Pb	5.4		N initial			Gse	
Gsb	2.609		N design			Pba	
binder Gb	1.035		N max			Pbe	
dust (- #200)	3.70				•		_
lime	0.99	Spec. /	A (Ndes)	Spec. E	3 (Ndes)		
dust(-#200) + lime		@ N ini	@ N des	@ N ini	@ N des	_	
a) Height, mm		124.2	115.7	124.6	115.9		
b) Weight in air			4738.1		4746.5		
c) Weight in wat	er		2724.9		2729.9		
d) SSD Weight			4741.8		4749.6		
e) Gmb (measur	ed) b/(d-c)					
f) Gmb (calculat	ted)					_	
, ,	•		•		•		

	Gmm #1
Weight of sample in air	1505.3
Weight of canister + H ₂ O	1275.3
Weight of canister + H ₂ O + sample	2166.6
Temperature of water	24.4
H ₂ O correction factor	1.0001
Rice SpGr (Gmm)	

Gmm #2
1523.9
1275.3
2177.5
24.4
1.0001

Average Max SpGr (Gmm)

	N initial	N design
Average Gmb		
% of Rice SpGr (Gmm)		

			 Dust to	
% Air Voids (Va)	% VMA	% VFA	Binder Ratio	
Specs:				

Core Dryback

Complete the DOT-42-Q form below.

Theoretical Maximum Specific Gravity

Sublot No. Max. Sp. Gr.

1	2	3	4	5		
2.447	2.452	2.452	2.450	2.441		

Lot Average Maximum Specific Gravity (Standard)

In-Place Density Measurement

Percent of Standard = [(Core Bulk Specific Gravity / Lot Average Maximum Specific Gravity)] x 100

Core				Station								Reheat	Core Bulk		Average
Sublot		Rand	Cumulative	for	Rand	Paving	Dist	ance	Actual Dry	Weightin	SSD	Correction	Specific	Percent of	Percent
No.	Height	Nbr.	Tonnage	Core	Nbr	Width	fron	n C/L	Weight	Water	Weight	Factor	Gravity	Standard	Standard
1 A	2.00	.61	305	165+52	.28	11	3.1	LT	1340.3	757.7	1351.7	$>\!\!<$	2.256		
1 B	2.25	.99	995	123+71	.65	11	7.2	LT	1430.2	808.0	1440.2	X	2.262		
2 A	2.13	.06	1,030	121+59	.17	11	1.9	LT	1308.2	739.8	1314.7	\times	2.276		
2 B	2.50	.65	1,825	73+42	.18	11	2.0	LT	1530.2	860.2	1541.3	X	2.247		
3 A	2.13	.01	2,005	62+51	.82	11	9.0	LT	1312.5	739.0	1321.8	X	2.252		
3 B	2.25	.32	2,660	22+82	.69	11	7.6	LT	1386.8	780.6	1397.0	\times	2.250		
4 A	2.38	.00	3,000	2+22	.26	11	2.9	LT	1504.5	851.9	1510.3	\times	2.285		
4 B	1.75	.84	3,920	143+72	.90	11	9.9	RT	1197.8	679.8	1202.2	X	2.293		
5 A	2.38	.36	4,180	127+23	.10	11	1.1	RT	1441.7	802.7	1449.0	$>\!\!<$	2.231		
5 B	2.25	.07	4,535	104+71	.59	11	6.5	RT	1463.7	832.4	1467.9	><	2.303		

Percent Density:	
------------------	--